Cognition and Safety

An Integrated Approach to System Design and Assessment

Oliver Straeter

Ashgate, Aldershot. (ISBN 0754643255)

Detailed Table of Content

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
</tbody>
</table>

Part I Concerns

1. The Need to Model Cognition in Safety

- The Challenge of Cognition for Safe Design and Organisation of Systems 3
 - Operational Levels 4
 - Cognitive Aspects of System Safety 6
 - Cognitive Performance as a Common Cause of Accidents 10
- A Proactive and Integrated View on Dealing with Cognitive Issues 12
 - The Hindsight Nature of Human Factors 12
 - Why is a More Coherent Picture of Cognition Needed? 14
 - Questions for Developing a Proactive and Integrated Approach 21

2. The Genesis of Modelling Cognition in Safety

- The Early Psychological Disputes from Behaviourism to Cognitivism 23
 - Behaviourism and Psychological Measurement 23
 - The Discovery of the ‘Mystical’ Aspects of Active Human Behaviour 24
 - Cognitivism and Technomorphism 25
 - The Gap between Issues and Models 28
Part II Integration

3. The Cognitive Processing Loop

Characteristic of an Integrated Modelling of Information Processing for Safety

- General Reflection of the Genesis
- Conclusion from the Genesis of Modelling Cognition

The General Nature of Cognitive Modelling

- Iterative Nature of any Scientific Loop of Progress
- Requisite Variety
- Computational Effectiveness and Combinatory Explosion
- Law of Uncertainty in Cognitive Modelling

Basic Maxims for Cognition

- Cognition is Experience-based
- Cognition is Both Perception-Driven and Goal-Driven
- Cognition is a Process of Dynamic Binding
- Cognition needs Cognitive Dissonance
- Cognition means Reduction of Cognitive Dissonance
- Cognition has Binary and Unspecific Mechanisms
Characteristics of the Cognitive Processing Loop
- The Cognitive Mill
- Central Cognitive Acts
- The Connectionism Nature of the Internal World
- The Cognitive Loop of Processing Information

4. Mechanisms of Cognitive Performance and Error
 - The Physiological Root of the Processing Loop
 - The Piece of Interest
 - Neurological Issues
 - Endocrine Issues
 - Relationship of Cognitive Aspects to Organic Regions in the Brain
 - Behaviour as a Result of Cognitive Binding
 - Dynamic Binding and the Generic Architecture of Memory
 - The Mathematical Calculus of Reasoning
 - Elements Determining Decision-Making
 - Mental Utility and Comfort

 The Perspective of Cybernetics and Information Theory
 - The Architecture of the Central Comparator
 - Reaction Time
 - Memory Span
 - Learning

Part III Application

5. Implications for Cognitive System Design
 - Critical Dimensions of Human Information Processing
 - Cognitive Control
 - The System Ergonomic Framework for Cognitive Control Loops
 - A Framework for Describing Mental Load and Mental Complexity

 The Role of the Processing Loop in Communication
 - Communication and Cognitive Control Modes
 - Causes for Communication Failures
 - Communication and Conflict
Integrating Cognition into System-Organisation and Management 159

• Trust as a Consequence of the Cognitive Processing Loop 159
• Transition and Change-Management 160
• Risk Communication and Questioning Attitude 161
• Safety Management 163

Integration of Cognition into Design and Operation 165

• The Remote Access to Cognitive Performance in Design 165
• The Cognitive Control Loop in Dynamic Situations 167
• Human Automation Management 169

The Link of Retrospective Analysis and Prospective Assessment of Human Error 174

• The CAHR Method 175
• Semantic Coding of the Experiences Represented in Event Information 178
• A Connectionism Approach for Data-Representation 179
• Detailed Analysis of Human Interventions 180
• Operational Events as a Source to Represent the Experience Layer 181

6. Assessment of Cognitive Performance in Safe Operations 185

A Historical Overview of the Quantitative Assessment of Cognitive Performance in Safety Assessments 185

• Human Reliability Assessment in the 1st Generation 185
• Methods in the Transition from 1st to 2nd Generation 188
• Human Reliability Assessment in the 2nd Generation 188
• Résumé on the Representation of Cognitive Aspects in Safety Assessments 190

Integrating Cognitive Performance and Safety Assessments 192

• Classifying Cognitive Performance and Error 192
• A Descriptive Decision Model for Safety Assessments based on the Processing Loop 196

Considerations on the Possibility to Quantify Cognitive Aspects 203

• Problems of Quantification 204
• Psychological Soundness of Quantitative Figures 205
• The Law of Intransitive Statements 208

Quantitative Assessment of Cognitive Processes 211

• Approach of Using Events for Quantification 212
• A Calculus for Quantification 214
Assessing and Validating the Cognitive Processing Loop 218
• The Assessment of Cognitive Expectancy 218
• The Assessment of Mental Utility 221
• Experiences as an Approach to Assess Errors of Commission and Organisational Aspects 226

7. Integration of Cognitive Performance 231

The Classical Treatment of Cognitive Aspects in Safety Assessments 231
• Limitations of the Current Representation of Cognitive Aspects in Safety Assessments 231
• An Integrated Approach of Assessing Cognitive Aspects in Design and Operation 234

The Importance of a Proactive Design and Assessment 237
• A Cross Industry View on Cognitive Science 238
• Overcome Hindsight on Human Cognition 239

8. Perspectives 241

Bibliography 245

Author Index 263

Keyword Index 269
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Interrelation of operational levels from design-level to working-level</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Constraints on decision-making and induced mental workload</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Cognitive properties as a common cause for degradation of system safety barriers</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Project costs commitment in different product stages</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Human Factor elements in different product stages</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>The behaviourism paradigm</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Wickens scheme of factors for human information processing; a classical approach of integrating various cognitive findings (according to Wickens, 1984)</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>The additive-factor logic or Sternberg paradigm</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>The ladder-model (according to Rasmussen, 1986, p. 7)</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>The GEMS-model (according to Reason, 1990)</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Contextual factors of the working environment structured in the Man-Machine System (MMS)</td>
<td>49</td>
</tr>
<tr>
<td>2.7</td>
<td>Dependencies of different causal factors in incidents (Sträter, 1997/2000)</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>The iterative liaison of data and models</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>The cognitive mill (e.g. Neisser, 1976)</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>The cognitive processing loop – coherency between coupling processes and experience-based knowledge</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>The piece of interest – The human brain</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Representation of the example of Rosenfeld using bilateral binding (from Dörner, 1997, p. 110)</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Representation of one additional aspect of truth into the example of Rosenfeld (from Dörner, 1997, p. 110)</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>The principle of dynamic binding of information</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>The principle architecture of human memory and the dynamic binding of information</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>The experiences of the staff in the Tokai Mura accident</td>
<td>97</td>
</tr>
<tr>
<td>4.7</td>
<td>The calculus of information processing</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Link of cognitive performance to behaviour</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>The role of settled experiences and generating of mind-sets</td>
<td>105</td>
</tr>
</tbody>
</table>
Figure 4.10 Elements determining decision-making related to the processing loop 108
Figure 4.11 From tendencies to solve tasks to habits, attitudes and traits 117
Figure 4.12 Iterations of the cognitive processing loop 120
Figure 4.13 Processing of letters by the central comparator 123
Figure 4.14 The processing loop and simple reaction time 128
Figure 4.15 Activity diagram of four iterations of the cognitive processing loop 129
Figure 4.16 Number of decisions a human can perform per time 130

Figure 5.1 The human–human and human–system coupling 143
Figure 5.2 Impact of cognitive activities on communication quality 150
Figure 5.3 Profile of influences on procedural vs. verbal communication 153
Figure 5.4 Balance of conflict 156
Figure 5.5 Progressive and balanced development of trust as a result of the sluggishness and hysteresis of the cognitive system 161
Figure 5.6 Profile of influencing factors in relation to cognitive demand 167
Figure 5.7 Resolving mechanisms used during car driving 168
Figure 5.8 The general framework for skill set prediction in SHAPE 170
Figure 5.9 Overview of the CAHR method 176
Figure 5.10 Event decomposition 177
Figure 5.11 Overview of the semantic processing of the event information 180
Figure 5.12 Event trace back into history from a defined error type to the underlying constraints 181
Figure 5.13 Possible development of a situation into behaviour 182
Figure 5.14 Necessity of a common language if retrospective analysis should be used for prediction 183

Figure 6.1 Action tree and error probabilities 186
Figure 6.2 Relation of dynamic situational conditions to the processing loop (related to the discussion in Part I of this book) 193
Figure 6.3 From simple tasks to cognitively existing tasks 199
Figure 6.4 The unfolded cognitive processing loop from resolving mechanism to behaviour 202
Figure 6.5 Hierarchy of data levels of measurement 205
Figure 6.6 The view on the distribution 208
Figure 6.7 The view on the distribution with resolvable intransitive statements 209
Figure 6.8 The view on the distribution with non-resolvable intransitive statements 210
Figure 6.9 Approach for using retrospective incident data for prospective design and assessment 213
Figure 6.10 Assessment of cognitive errors in uncertainties of the internal and external worlds 215
Figure 6.11 In-car display with secondary task 219
Figure 6.12 Differences in reaction time responding to different symbols when performing the decision-response while driving and in the stationary condition 220
Figure 6.13 Frequency of failure occurrence for ignoring a critical alarm in a steer-by-wire car 224
Figure 6.14 Influencing factors and their interrelations 228

Figure 7.1 The safety assessment model from initiating event to safety performance 232
Figure 7.2 Problems of the event sequence approach for including active human involvement (e.g. errors of commission) 233
Figure 7.3 The use of the cognitive processing loop in dynamic safety assessments 235
List of Tables

Table 2.1 Broadening the model of Rasmussen by adding the goal-related aspects 42
Table 4.1 General allocation of cognitive characteristics and neural structures 88
Table 4.2 Logic reasoning as the relation between activation in the mirror and activation fed back to the central comparator 125
Table 5.1 Cognitive coupling of human and technical system 149
Table 5.2 Cognitive resolving mechanisms showed in events, most efficient communication strategy and most efficient means to overcome the situation 158
Table 5.3 Overview of the skill changes predicted and observed in the data-link experiment 172
Table 5.3 Overview of the skill changes predicted and observed in the data-link experiment (continued) 173
Table 5.4 Illustration of a sub-set of experiences as coded in the CAHR method on the basis of a hypothetical example 179
Table 6.1 Cognitive error taxonomy based on the cognitive processing loop 197
Table 6.2 Parts of the cognitive control loop likely involved in cognitive coupling 200
Table 6.3 Application of the CAHR method for predicting possible reactions of drivers to failures of the steer-by-wire systems in automobiles